
Monkeys — a Software Architecture for ViRoom

— Low-Cost Multicamera System

Petr Doubek, Tomáš Svoboda, and Luc Van Gool

Computer Vision Laboratory, ETH Zürich, Switzerland

Abstract. This paper presents a software architecture for a software-
synchronized multicamera setup. The software allows consistent multi-
image acquisition, image processing and decision making. It consists of
several programs that perform certain tasks and communicate with each
other through shared memory space or TCP/IP packets. The software
system can easily accommodate different number of FireWire digital
cameras and networked computers. Minimal hardware requirement is the
main advantage of the system which makes it flexible and transportable.
The functionality of the system is demonstrated on a simple telepresence
application.

1 Introduction

Smart multicamera systems are becoming more common due to the decreasing
prices of powerful computers and digital cameras. Some of them were developed
for creating realistic 3D models [4] or virtual views [5]. In late 1990’s, new kinds
of multicamera setups appeared. The main goal was not so much reconstruction
but action recognition and interpretation. These applications mostly need real-
time performance and current computers are capable of running wide range of
image processing algorithms in real-time.

Cameras were often combined with microphone arrays for voice recognition
and/or navigation. The EasyLiving project is developing an intelligent room that
will be able to unobtrusively interact with a user [3]. The AVIARY project uses
cameras and a microphone array for finding moving and/or speaking person.
The detected speaker is then tracked and the best camera is chosen. A limited
number of basic events are recognized [12]. Very recent project called M4 [1] tries
to develop system that enables structuring, browsing and querying of an archive
of analyzed meeting. In an addition to the projects creating whole environments,
monocular methods are being extended to multiple views, especially tracking [7].

However, most of the systems are fixed to one room and they are still ex-
pensive for a casual user. Our goal is to develop a real-time multicamera system
which would be flexible in terms of camera types and their number, easy to
setup so that it can be moved from one place to another within hours, able to
run on standard consumer hardware and affordable for almost anyone who al-
ready has a computer. The basic service that it should provide is a synchronized
image capturing and the possibility to easily integrate both image processing



algorithms working on single images as well as algorithms which use informa-
tion from multiple cameras. Appropriate algorithms can be plugged-in for any
particular application without the need to rebuild the whole system.

The mobility allows to move the system to the environment where the ac-
tivities take place instead of moving the activities to the lab with the camera
system. The production of training videos or the visual supervision of a machine
maintenance in a factory are only two examples of applications of such a mobile
multicamera system.

2 Hardware

We decided to use IEEE 1394 (FireWire) digital cameras which are now available
in a large variety of types and prices. It is easy and cheap to add a FireWire card
to a computer and new computers often already have FireWire ports included.
Linux was chosen as an operating system for ViRoom because of its support
for networking. We use several PCs connected by Ethernet and communicating
over the TCP/IP protocol. Any Linux/PC computer connected to Internet can
become a part of our system.

To keep the price of the whole setup low we use mainly simple webcams
such as ADS1 PYRO or Unibrain2 Fire-i without precluding attaching higher
quality cameras. Prices for the simple FireWire cameras start around 100 Euro
which makes them affordable even for an occasional user or for home usage
and it also allows to build systems with a high number of cameras. The main
drawback is that they lack the external synchronization feature, so the software
synchronization described have to be used. We describe it briefly in this paper,
more details can be found in [11]. Although it is not as accurate solution as the
hardware synchronization it requires no additional hardware or cables and thus
helps to keep the system mobile and flexible.

3 Software Architecture

The overall software architecture is determined by the need for a software syn-
chronization. The main control process, called Orangutan, synchronizes image
capturing servers (CameraD) and collects the results from the image processing
servers (Tamarin). The three processes mentioned above are necessary for any
application and they will be described in this section. Inter-process communica-
tion and dataflow are explained in Fig. 1. Application-dependent multiple view
algorithms are separate processes and they will be described in Sec. 4.

3.1 CameraD – Capturing Server

CameraD is a capturing server running on every computer with cameras at-
tached. Its job is to wait for commands to capture images from the camera(s).

1 http://www.adstech.com
2 http://www.unibrain.com



camera(s) Tamarin(s)

images

capture
commands

CameraDlibdc1394 shared memory

images

local computer(s)

Orangutan

capture
commands

Ethernet, TCP

image processing
commands

results

application dependent monkeys

shared memorycollected results

control computer

requests,
results

Fig. 1. Monkeys for the ViRoom. The top box shows processes running on the local
computers with attached cameras. The bottom one shows the control computer with
the control process. Arrows indicate commands and data exchanged between processes.

Captured images are stored in a cyclic buffer in a shared memory. This shared
memory space is being accessed by other processes running on the same com-
puter. Sending images over the network or saving them to the local disk are
also possible options. Each stored image is identified by a camera number and a
frame number. The frame number is a part of the capture command and serves
for the time synchronization.

3.2 Tamarin – Image Processing Server

Tamarin is an image processing server running on computers with cameras at-
tached. One Tamarin is started for each camera. It waits for commands to process
images captured by CameraD. The frame number is attached to each command
and Tamarin waits until the frame with this number appears in the shared mem-
ory. The commands for each frame are sent all at once, but results are sent back
separately as soon as they are available.

The operations that Tamarin performs are supposed to be quite elemen-
tary. Currently image resampling, histogram calculation, background segmenta-
tion and silhouette extraction have been implemented. These operations may be
combined to form more advanced tasks, e.g. sending extracted silhouettes from
a segmented downsampled image together with a part of that image.

The required frame rate and output resolution or precision may vary for each
application. Computationally expensive algorithms are performed on a down-
sampled image while the same frame in the original resolution can still be used
for another task.



3.3 Orangutan – The Main Control Process

Orangutan is the main control process. It synchronizes CameraDs and collects
the results from Tamarins. It parses a XML configuration file which specifies
the desired application. The file contains instructions about processes to start,
connection points (addresses, ports and shared memory keys) and commands
to send, see Table 1 for an example. Its first task is to start all other processes
including those running on remote computers. Orangutan passes the same con-
figuration file to every process it starts so that they can establish necessary
connections.

After this starting phase, it begins to send capturing commands to all Camer-
aDs to synchronize them and immediately after that commands to the Tamarins
to process the images. Then it gathers the results and stores them into shared
memory. It does not run any algorithms on the results to ensure an undelayed
sending of commands and gathering of results. Orangutan can run on any com-
puter and we usually attach also one or two of the cameras to the computer with
Orangutan.

<orangutan id="255" start_rid="1" shmkey="22000" period="66">

<image start="yes" downscale="1"/>

<lemur display_info="0" display_areas="1"/>

<camerad id="2" name="viroom02" port="6666" shmkey="21005">

<tamarin id="20" node="0" port="6700" mode="rgb"/>

<tamarin id="21" node="1" port="6701" mode="rgb"/>

</camerad>

</orangutan>

Table 1. An example of a simple configuration file. Orangutan starts the mentioned
processes – CameraD and two Tamarins on host viroom02 and Lemur (will be discussed
later) on the local computer. Tamarins will be asked to send downsampled images which
will be stored locally by Orangutan and displayed by Lemur.

4 Multiple View Algorithms

The three processes described in Sec. 3 are necessary for any application. Their
output is stored in the shared memory. We need also process(es) which display
or further work out the results. The Lemur process has been developed for dis-
playing. It can display images stored in the shared memory as well as other
results, such as segmented images, silhouettes, histograms or virtual 3D objects
etc. Algorithms using multiple image information run as another process and
use also the same shared memory as Lemur for an input. Their results can be
displayed, stored or they can pass requests back to Orangutan.



4.1 Gibbon – Closest View Selection for Telepresence

Gibbon is an example of a process working with information from multiple
cameras. Its task is to select the closest view of a person moving in ViRoom.
Teleteaching or teletraining are motivations for this specific application. The
main goal is to provide an immersive video stream of an action that is being
performed in a relatively large environment, a classroom or an assembly booth,
for instance. One camera suffers from a limited and often occluded field of view.
The main ViRoom idea is to place several cameras around or even inside the
working volume and to let Gibbon keep the person optimally visible in the
videostream throughout his or her action.

Gibbon runs on the same computer as Orangutan and has access to the
shared memory where Orangutan stores results from the Tamarins, see Fig. 2.
Tamarin runs background segmentation on each frame, based on [6] and [2].
Silhouettes are extracted from the segmented image using algorithm based on
marching squares. Tamarin also computes the bounding box of the silhouette.
The decision making process, Gibbon, selects the silhouette with the largest

camera(s) Tamarin(s)

images

capture
commands

CameraDlibdc1394 shared memory

images

local computer(s)

Orangutan

capture
commands

Ethernet
TCP

commands:
send silhouettes

send selected image

silhouettes,
image

shared memory

control computer

selected view Id

silhouettes,
image

image

Lemur Gibbon
silhouettes

selected view Id

Fig. 2. Dataflow for the closest view selection application is shown in this figure. Com-
pared to the general software architecture scheme in Fig. 1 there are two new processes
on the control computer. Gibbon selects the closest view and Lemur displays it.

bounding box si,t for each camera i and time frame t. A camera candidate for
the best view is selected as ct = arg maxi area(si,t). To prevent rapid and thus
disturbing switching between views, when a person has about an equal size in
two or more cameras, we set the switching resistance r > 1. To switch the view,



the inequality area(sct,t) > r ∗ area(sct−1,t) has to be satisfied, otherwise ct is
set back to ct−1.

Another feature offered by Lemur is virtual zooming. When it is turned
on, Gibbon finds a rectangle inside the view ct which contains the silhouette
and has a specified aspect ratio. This information (selected view and zoom-
in rectangle) is passed back to Orangutan. Orangutan then asks Tamarin to
send only the requested rectangle from the next frame and Lemur will show the
zoomed image of the person moving in ViRoom, see Fig. 3. The whole image is
sent and displayed in the case that the virtual zoom is turned off.

It should be noted that this view selection is fairly simple and does not take
into account changes in the background (for example a moved chair would be
selected), or heading of the person (the closest view is not useful if we do not
see the face). These drawbacks are currently being solved by the integration of
a human tracker [9].

Fig. 3. Zoomed-in image of the segmented object is shown on the top, small images
on the bottom line show available views and extracted silhouettes in them.

The application currently works with 320x240 pixel images which are down-
sampled to 160x120 pixels for the segmentation and silhouette extraction because
higher resolution silhouettes are not needed for this application. However, the
selected view is sent in the original 320x240 resolution using JPEG compres-



sion. The image processing itself including the compression (which takes about
half of the time) is fast enough to run at 30 frames per second, but because
of the delays caused by the network and the capturing a framerate of 15 fps is
used for a stable performance (on Pentium III 1GHz processor). An alternative
is to use 640x480 pixel resolution at 7.5 fps which presented in Fig. 3. There
is space for improving the framerate or resolution by using faster compression,
code optimizations or up-to-date CPUs.

4.2 Synchronization Error Measurement

In this experiment, the error of the software synchronization managed by Orang-
utan (see Sec. 3.3) is roughly measured for two cameras. The main limitations of
this synchronization are network delay on a loaded network, latency of the Linux
scheduler and unknown delays caused by camera drivers and hardware [11].

We point the cameras at a computer screen and display a simple box counter
on the screen, see Fig. 4. The window on a screen is completely black at the
start. Every 10ms one white box is added in a line until they reach end of the
screen and counting starts over. Tamarin segments the foreground white boxes,
counts them and sends the result to Orangutan. The results from both Tamarins
are stored in shared memory and compared against each other.

(a) (b)

Fig. 4. Synchronization error measurement. Both cameras (a) should capture at the
same time and therefore see the same number of boxes (b). However, the left camera
captured later and captured one box more compared to the right one.

This measurement is not entirely precise due to the limited refresh rate of
the monitor (the refreshing period is 12-17ms depending on settings used) and
errors in the segmentation caused by noise. The length of a camera exposure is
another limitation – during the exposure time box may light up which makes
box count ambiguous. Nevertheless, calculating the difference between counted
boxes for a large number of frames gives us idea how big the synchronization
error is. An average value of about 20ms was measured for typical frequencies



we use (15 and 7.5 frames per second), which may be considered significant.
However, our older experiments [11] showed that it is acceptable even for such
a synchronization sensitive task as the self-calibration by a moving object.

5 System Setup

As already mentioned, the flexibility of the whole system is one of the main
features. The system configuration is expected to change often by accommodat-
ing new cameras and computers or just simply changing the camera positions.
Though many multiview algorithms may run with a totally uncalibrated system,
the knowledge about its parameters may be very helpful or even necessary for
many applications. Our geometric self-calibration and color alignment methods
are sketched in the following two sections.

5.1 Self-Calibration

The theoretical basis can be found in [10]. Here, we describe briefly the practical
realization. A person waves a standard laser pointer around the whole work-
ing volume. The very bright projections of the laser pointer can be detected in
each image with subpixel precision by fitting an appropriate point spread func-
tion. These particular positions are then merged together over time, creating
thus projections of a virtual 3D object. This virtual object is then projectively
reconstructed. The final step is the Euclidean stratification that converts the
projective reconstruction into Euclidean structures. More details can be found
in [11]. The whole process runs without any user interaction, requires no special
calibration object with known 3D coordinates and produces the complete linear
camera models, ie. intrinsic and extrinsic parameters. All cameras are calibrated
with respect to one common world frame.

5.2 Color Alignment

Having the same color characteristics across all cameras is necessary for a dis-
turbance-free impression of the automatic camera selection algorithm described
in Sec. 4.1. The color alignment would also ease correspondence search and color
based tracking.

Our cameras have an auto-adjustment feature which changes gain, brightness
and white balance dynamically. But this feature cannot be used, because it
changes the camera parameters during the runtime without any notice to the
software. An appearance of a large object in the camera view – for instance
a person moving close to the camera – can cause a significant change in the
parameters and affect the segmentation method.

The most precise way to align camera parameters would be to use some
object with a known color for the calibration or use common parts of the scene
and adjust the parameters to match their colors. Unfortunately, the use of some



calibration object for the color adjustment is not suitable for a flexible and
mobile system with such a large working volume.

Therefore, so called “medium gray world” is assumed and the algorithm de-
scribed in [8] is applied. This algorithm changes the brightness, the gain and
the white balance parameters of the camera to make the mean value in each
color separation (R,G,B) equal to a predefined value (usually 50% of the max-
imal value), see Fig. 5. The parameters are adjusted for each view separately,
because we do not have information about view overlap. We can either adjust
the parameters each time the system starts or adjust them and save for later
use.

Fig. 5. Image color histograms before (top) and after (middle) the color alignment
between three views. At the start the left image was too dark, the middle one lacks one
color and the right one is too bright. The color alignment adjusts camera parameters
so that colors are balanced and the mean intensity value is at 50% of the maximal
value. The resulting images are shown on the bottom. A large number of high intensity
pixels in the middle and left view is caused by the light reflected from white walls.

6 Conclusions

Monkeys for the ViRoom — the software architecture for software-synchronized
multicamera system — were presented. This architecture allows to build low-
cost systems for the applications where multiple views are essential. Moreover,
it permits frequent reconfiguration, thus making the multicamera setup very
flexible. We argue that the synchronization error — although it is high compared
to hardware synchronization — is acceptable for a wide range of applications and
we introduce the closest view selection for telepresence as a first application of
the architecture.



The results were achieved with relatively simple image processing algorithms
and the reliability of our self-calibration motivate us to upgrade our system by
integrating new tracking algorithms such as [9] and by using 3D information. We
are also working on improving reliability of the capturing software, especially in
the case that more cameras are attached to one computer.

Acknowledgment. This work has been supported by ETH Zürich project
BlueC and European Union project STAR.

References

1. M4 — multi-modal meeting manager. http://www.idiap.ch/˜mccowan/meeting/,
Last visited on 25th October 2002. European project, 5th Framework Programme,
IST.

2. Til Aach and André Kaup. Bayesian algorithmus for adaptive change detection
in image seuences using Markov random fields. Image Communication, 7:147–160,
1995.

3. Barry Brumitt, Brian Meyers, John Krumm, Amanda Kern, and Steven Shafer. Ea-
syliving: Technologies for intelligent environments. In Proceedings of the 2nd Inter-
national Symposium on Hanheld and Ubiquitos Computing, pages 12–29, Septem-
ber 2000.

4. Takeo Kanade, P.J. Narayanan, and Peter W. Rander. Virtualized reality: Con-
cepts and early results. In IEEE Workshop on the Representation of Visual Scenes,
pages 69–76, June 1995.

5. I. Kitahara, H. Saito, S. Akimichi, T. Onno, Y. Ohta, and T. Kanade. Large–
scale virtualized reality. In Computer Vision and Pattern Recognition, Technical
Sketches, June 2001.

6. Rudolf Mester, Til Aach, and Lutz Dümbgen. Illumination-invariant change de-
tection using statistical colinearity criterion. In R. Radig and Florczyk S., editors,
DAGM2001, number 2191 in LNCS, pages 170–177. Springer–Verlag, 2001.

7. Anurag Mittal and Larry S. Davis. M2tracker: A multi-view approach to seg-
menting and tracking people in a cluttered scene using region-based stereo. In
A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, editors, The seventh European
Conference on Computer Vision, ECCV2002, volume 1 of LNCS, pages 18–36.
Springer, May 2002.

8. Harsh Nanda and Ross Cutler. Practical calibrations for a real-time digital omnidi-
rectional camera. In Technical Sketches, Computer Vision and Pattern Recognition,
December 2001.

9. K. Nummiaro, E. B. Koller-Meier, and L. Van Gool. An adaptive color-based
particle filter. Image and Vision Computing, page 3, 2002. To appear.

10. Mark Pollefeys, Reinhard Koch, and Luc Van Gool. Self-calibration and metric
reconstruction inspite of varying and unknown intrinsic camera parameters. Inter-
national Journal of Computer Vision, 32(1):7–25, August 1999.

11. Tomáš Svoboda, Hanspeter Hug, and Luc Van Gool. ViRoom — low cost syn-
chronized multicamera system and its self-calibration. In Luc Van Gool, editor,
Pattern Recognition, 24th DAGM Symposium, number 2449 in LNCS, pages 515–
522. Springer, September 2002.

12. Mohan M. Trivedi, Ivana Mikic, and Sailendra K. Bhonsle. Active camera networks
and semantic event databases for intelligent environments. In IEEE Workshop on
Human Modeling, Analysis and Synthesis (in conjunction with CVPR), June 2000.


