
Volume 22 (2003), number 2 pp. 181–193 COMPUTER GRAPHICS forum

3D Video Recorder: a System for Recording and Playing
Free-Viewpoint Video†

Stephan Ẅurmlin1, Edouard Lamboray1, Oliver G. Staadt2 and Markus H. Gross1

1Computer Science Department, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
2Computer Science Department, University of California, Davis, CA, USA

Abstract
Wepresent the 3D Video Recorder, a system capable of recording, processing, and playing three-dimensional video
from multiple points of view. We first record 2D video streams from several synchronized digital video cameras
and store pre-processed images to disk. An off-line processing stage converts these images into a time-varying
3D hierarchical point-based data structure and stores this 3D video to disk. We show how we can trade-off 3D
video quality with processing performance and devise efficient compression and coding schemes for our novel 3D
video representation. A typical sequence is encoded at less than 7 Mbps at a frame rate of 8.5 frames per second.
The 3D video player decodes and renders 3D videos from hard-disk in real-time, providing interaction features
known from common video cassette recorders, like variable-speed forward and reverse, and slow motion. 3D video
playback can be enhanced with novel 3D video effects such as freeze-and-rotate and arbitrary scaling. The player
builds upon point-based rendering techniques and is thus capable of rendering high-quality images in real-time.
Finally, we demonstrate the 3D Video Recorder on multiple real-life video sequences.

Keywords: Point-Based Rendering, Object Reconstruction, Three-Dimensional Video, Compression

ACM CSS: I.3.2 Computer Graphics—Graphics Systems, I.3.5 Computer Graphics—Computational Geometry
and Object Modelling, I.3.7 Computer Graphics—Three-Dimensional Graphics and Realism

1. Introduction

Conventional 2D video is a mature technology in both pro-
fessional environments and home entertainment. A multi-
tude of analog and digital video formats is available today,
tailored to the demands and requirements of different user
groups. Efficient coding schemes have been developed for
various target bit rates, ranging from less than 100 Kbs−1

for video conferencing applications to several megabit per
second for broadcast quality TV. All of these technologies,
however, have in common that they are only capable of cap-
turing temporal changes of scenes and objects. Spatial varia-

† This paper is a revised version of the manuscript entitled ‘3D
Video Recorder’ published inProceedings of Pacific Graphics ’02,
IEEE Computer Society Press, pp. 325–334, (Pacific Graphics 2002,
Tsinghua University, Beijing, China, October 9–11, 2002).

tions, i.e. altering the viewpoint of the user, are not possible
at playback. 3D video captures dynamics and motion of the
scene during recording, while providing the user with a pos-
sibility to change the viewpoint during playback.

Spatio-temporal effects (e.g.freeze-and-rotate) havebeen
demonstrated in numerous recent feature films. However,
these effects can only be realized by employing a large
number of still cameras, and involve a considerable amount
of manual editing (http://www.mvfx.com/). Typically,
input data is processed off-line in various ways to create
a plenitude of stunning effects. A 3D video system could
capture and process this data without manual intervention in
shorter time and at lesser cost.

The approach presented in this paper is a generalization
of spatio-temporal or 3D video. We present algorithms and
data structures for acquisition and construction of view-

c© 2002 IEEE. Reprinted, with permission, fromProceedings of
Pacific Graphics ’02, IEEE Computer Press, 2003. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

181

182 S. Ẅurmlin et al. / 3D Video Recorder

independent time-varying video. Each 3D video frame is
stored in a 3D point-based data structure which allows for
direct rendering. We present a 3D video player supporting
multi-viewport rendering of pre-recorded dynamic scenes
in real-time. Moreover, we adapt standard video cassette
recorder interaction features, such as variable-speed forward
and reverse and slow motion, and introduce novel 3D video
effects such as freeze-and-rotate, or arbitrary scaling.

The architecture of the 3D Video Recorder reflects
two main performance constraints of any video recorder:
Acquisition of input data as well as playback of 3D
video have to be accomplished in real-time. However,
processing 3D video from acquired image data can be
carried out off-line without real-time constraints. After the
acquisition of multiple video streams, we reconstruct 3D
information for every pixel in the input images and store
this representation using an hierarchical, point-based data
structure. Although our framework does not build upon a
specific reconstruction scheme, we currently use a shape-
from-silhouette method to extract positional and normal
information. Other reconstruction schemes, such as voxel
coloring, multi-baseline stereo, or active vision systems
[4], can be used instead. In general, our framework is
able to build a 3D video including fore- and background.
The prototype presented in this paper however, aims at
generating 3D video from objects, i.e. humans, and not from
scenes. The 3D video player decodes the compressed 3D
video progressively from disk and renders the 3D video
object employing efficient point-based rendering schemes.

The main contributions of this paper can be summarized
as follows:

• A general framework for 3D video recording comprising
acquisition, processing, and rendering of time-varying
3D scenes;

• An efficient processing pipeline to reconstruct
view-independent 3D video with a user-controlled
trade-off between processing time and 3D video
quality;

• Efficient algorithms for encoding and compressing the
resulting progressive 3D video;

• A full-featured 3D video player built upon a real-time
point-based rendering framework.

1.1. Previous Work

View dependent 3D video representations and systems are
still an emerging technology and various approaches have
been developed in the past.

Kanadeet al. [11] and Narayananet al. [18] employ
a triangular texture-mapped mesh representation. Multi-
baseline stereo techniques extract depth maps from a fixed
set of camera positions, which requires significant off-line

processing. At rendering time, depth information from one
or more cameras closest to the new virtual view are used
to construct the mesh. An edge-collapse algorithm is used
for mesh simplification. For theEyeVisionsystem, based on
Vedula [30], a large number of video cameras, distributed in
a football stadium, are used for capturing sports events from
different views. Replays are constructed from interpolated
views, both in space and time.

Mulligan and Daniilidis [17] presented an approach uti-
lizing trinocular stereo depth maps. Their system is used in
a tele-immersive conference where advanced off-line pro-
cessing and storage as well as compression issues have not
been addressed. Pollard and Hayes [21] utilize depth map
representations to render real scenes from new viewpoints
by morphing live video streams. Pixel correspondences are
extracted from video using silhouette-edge information. This
representation, however, can suffer from inconsistencies be-
tween different views.

The image-based visual hull (IBVH) system, introduced
by Matusik et al. [15], is taking advantage of epipolar
geometry [6] to build an LDI [28] representation.
Color information is determined using nearest-neighbor
interpolation. Thus, depth-color alignment cannot be
guaranteed. While the resulting LDI is neither progressive
nor view-independent, it allows for free scaling and
freezing. Due to the fact that it is a real-time system, free
spatio-temporal effects (e.g. freeze-and-continue) cannot
be accomplished. The polyhedral visual hull [14] also
builds upon an epipolar geometry scheme for constructing
a triangular representation of an object. While this enables
viewpoint-independent rendering, the limitations of mesh-
based methods persist: The potentially improper alignment
of geometry and texture, and the non-trivial realization of
progressive streaming of dynamically changing polygonal
meshes.

Other approaches are based on volumetric object
representations. Moezziet al. [16] create view-independent
3D digital video from multiple video sequences. The
dynamic information from each video is fit into a voxel
model and combined with a pre-generated static model of
the scene. Yemez and Schmitt [32] introduce an octree-
based particle representation of 3D objects, which they use
for multilevel object modeling, storage, and progressive
transmission. However, they transform the octree particles
into a triangle mesh before rendering and do not address
compression issues.

Rusinkiewicz and Levoy presented Streaming QSplat
[26], a view-dependent progressive transmission technique
for a multi-resolution rendering system, which is based
on a bounding sphere hierarchy data structure and splat
rendering [25]. Their framework is efficient for streaming
and rendering large but static data sets.

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 183

3D
Reconstruction

Encoding &
Compression

Decoding Rendering

Video Images Multiple Image
Sequences on Disk

PRk Tree 3D Video
on Disk

3D Points Screen

2D
Preprocessing

Figure 1: System Architecture of the 3D Video Recorder. The pipeline illustrates the process for one frame.

1.2. Overview

The following section describes the overall architecture of
the 3D Video Recorder. Section 3 presents recording and
preprocessing of the 2D video input streams. Section 4 de-
scribes the different steps comprising the 3D video process-
ing pipeline, including the hierarchical data representation
of 3D video and compression. The 3D video player is intro-
duced in Section 5. Our prototype acquisition environment
is presented in Section 6, followed by a discussion of exper-
imental results in Section 7. Finally, Section concludes the
paper and discusses some ideas for future work.

2. System Architecture

A schematic overview of the 3D Video Recorder is depicted
in Figure 1. As opposed to a traditional 2D home video
recorder comprising only two stages—recording and
playback—the 3D Video Recorder features an additional
stage: processing. It is clear that recording and playing need
to be carried out in real-time. There are no hard real-time
constraints for the off-line processing stage. According to
Deering [5], spending 60× more time on off-line processing
than on on-line decompression is still acceptable. A
3D-replay application in a broadcasting studio has stronger
time constraints, since the replay needs to be available
for broadcast only 10–20 seconds after the live action.
The ultimate goal of a 3D video recorder is to process 3D
information within these time limits.

The key elements of the 3D Video Recorder stages can be
summarized as follows:

• 2D Video Recording. (Section 3) Video images from
multiple cameras are streamed to disk in real-time. The
images are undistorted and segmented on-the-fly.

• 3D Video Processing. (Section 4) The key task of
the processing stage is the reconstruction of 3D
positional information for every foreground pixel
of the input images. Optionally, we can calculate a

surface normal for every 3D point. Since we employ
a shape-from-silhouette algorithm whose performance
largely depends on the approximation of the silhouette
contours, the user can control the accuracy of the
approximation to trade-off performance and quality.
The reconstructed 3D points from all cameras are
merged in an hierarchical data structure, the PRk-tree,
which is a variant of an octree. This tree is encoded,
compressed, and stored to disk.

• 3D Video Playing. (Section 5) The decoded sequence
is displayed using a point-based rendering framework.
We use efficient splatting schemes for rendering a
continuous surface of the 3D video object. The 3D
video player incorporates features known from 2D video
such as play, pause, fast-forward, fast-reverse, and slow
motion. Moreover, it also integrates novel video effects
like arbitrary scaling, panning, tilting and freeze-and-
rotate.

3. 2D Video Recording

Recording multiple synchronized live video streams requires
preprocessing and file streaming techniques that run at
interactive rates. Since we need to store several NTSC-
resolution video sequences, we have to reduce the data
volume during acquisition. For that purpose, we did not
consider lossy image or video compression schemes, such
as JPEG or MPEG, because we did not want to compromise
the 3D video reconstruction by introducing compression
artifacts in the 2D video sequence. As an alternative,
we carry out image segmentation, which is necessary for
separating the foreground object from the background.
Based on the segmented images, we only record the area-of-
interest for each frame. This results in storing a rectangular
sub-image which contains the complete view of the object,
together with offset position and dimensions of the area-of-
interest. For typical sequences, we can thereby reduce the
size of the 2D video stream by 50%. Off-line entropy coding
of the 2D video sequences additionally results in 30–50%
compression gain.

c© IEEE 2002

184 S. Ẅurmlin et al. / 3D Video Recorder

The employed segmentation method is built on traditional
chroma-keying [29,31]. We can classify an object in front of
ablue background as foreground if

Bb � a2 · Gb, (1)

wherea2 is an arbitrary constant between 0.5 � a2 � 1.5,
andBb andGb are the blue and the green chroma channels
of the video pixel, respectively. Note that we only need to
consider a binary decision for separating foreground and
background pixels. We do not need to calculate anα-value,
as in traditional matting. One problem arising from this
approach is color spill near object silhouettes [29], i.e. the
reflection of background color on the foreground object due
to increasing specularity near grazing angles. This leads
to poor image quality when merging the points together
from multiple cameras as discussed in Section 4.2. Since we
oversample the object in a multi-camera setup, we solve this
problem by simply shrinking the mask by a few pixels for
reconstruction.

Another issue that leads to severe artifacts when merging
3D points from multiple cameras is also tackled at this
stage: The use of lenses with short focal length results in
video frames with heavy distortions. A 4.5 mm lens, for
example, can lead to displacements of up to 20 pixels in
the periphery of the image. Our point-merging framework
relies on the assumption of point correspondences between
frames from different cameras. This assumption does not
hold anymore when the video images are distorted. Thus, we
need to undistort the image before further processing. We
employ the Open Computer Vision Library (http://sf.

net/projects/opencvlibrary/) for undistortion, which
is based on a pre-computed displacement look-up table and
thus reasonably fast.

4. 3D Video Processing

Once the 2D video sequences are recorded, we start the
3D video generation. Since our 3D video framework builds
upon point-based modeling and rendering, we do not need
connectivity information for rendering. The input data, i.e.
video images, do not provide meaningful neighborhood
information, since adjacent pixels on the image plane are
not necessarily adjacent on the surface of the sampled
object. Since we associate a 3D point with every 2D
pixel, 3D video processing provides a one-to-one mapping
between the color of 2D pixels in the input images and
the corresponding 3D points. Consequently, we can avoid
interpolation and alignment artifacts introduced by mesh-
based representations. At the end of the processing stage, the
3D points are encoded, compressed and streamed to disk.

4.1. 3D Reconstruction

For every pixel used in the 3D video we have to compute
a 3D point. Thus, we need a method which projects a

(a) (b) (c)

Figure 2: Different scales in the contour extraction. (a) An
exact contour with 2548 points, (b) an approximation with
221 points (threshold=5), and (c) an approximation with 94
points (threshold=15).

pixel from 2D image space into 3D object space. In our
implementation we utilize a variant of the image-based
visual hulls (IBVH) [15]. Originally, depth and normal
information are calculated for each pixel for adesired view
different from the reference views of the cameras. In our
approach, we carry out the reconstruction for each of the
camera views. This ensures a one-to-one mapping between
depth information and texture color information. The IBVH
method computes a volume known as the visual hull, which
is the maximal volume consistent with all input silhouettes
[12]. The visual hull is computed in such a manner that
quantization and aliasing artifacts imposed by volumetric
approaches are removed.

For computing image-based visual hulls we determine a
depth interval for 3D rays originating from the camera’s
center-of-projection and going through every pixel. Each ray
is projected onto the image planes of the other cameras.
Finally, we intersect the projected ray with all silhouette
contour edges and project the resulting interval back onto
the original 3D ray. The performance bottleneck is the 2D
line–line intersection in the image planes which depends on
the number of silhouette contour edges. We devise a novel
multi-scale contour extraction method which leads to a user-
controllable trade-off between performance and resulting
image quality. Note that the contour extraction is computed
on the original silhouette mask rather than on the shrunken
silhouette as explained in Section 3.

4.1.1. Contour Extraction

Our contour extraction algorithm marches the pixels of
silhouette boundaries and stores edge endpoints. A user-
controlled parameter determines the accuracy of a contour
and is a threshold for permitted direction changes along the
approximation of a silhouette edge. Hence, larger thresholds
result in coarser approximations of the edge and, thus, a
smaller number of contour edges.

One special property of our extraction method is that

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 185

it approximates the silhouette very well along curved
boundaries, while only few edges are required for straight
regions. The threshold used for describing a person’s
silhouette is typically in the range of 0, which results in an
exact contour, to 15, which is leading to a total number of
edges between 2500 and 50. For a more precise discussion
of the performance–quality trade-off, see Section 7.

4.2. PRk-Trees

The generation of 3D points for every camera view still
leads to a view-dependent 3D video. The support of
arbitrary viewpoints however, requires a view-independent
representation. We therefore merge all 3D information
in a PRk-tree, which is a hierarchical point-based data
structure. This data structure is a variant of the point-region
quadtree (PR quadtree) [27], which is very well suited
for 2D point representations. The PR quadtree forms a
regular decomposition of planar regions, which associates
data points with quadrants. Leaf nodes are either empty or
contain a single point and its coordinate. A straightforward
extension for 3D points in volumetric regions is the PR
octree. The main disadvantage of the PR quadtree/octree
is that the maximum decomposition level largely depends
on the distance between points in the same spatial region.
If two points are very close, the decomposition can be
very deep. This can be avoided by employing bucketing
strategies, viewing leaf nodes as buckets with capacity
c. Nodes are only decomposed further when the bucket
contains more thanc points.

Another approach for controlling the number of decom-
positions at each level consists in subdividing a node by an
integer factor ofs in each spatial direction. In the 3D case,
this results ink = s3 child nodes at the next level. Fors = 2,
our representation forms a PR8-tree, which is identical to the
PR octree. By varyings, wecan balance the depth of the tree
for a desired number of points. Figure 3 depicts a simple 2D
example of a PR9-tree decomposition.

Table 1 lists the minimum, maximum, and average depths
of a PRk-tree for real data. For this case,s = 3 is agood
choice. The maximum depth fors = 2 is too large. On
the other hand, the tree fors = 4 becomes too wide with
already more than 16 million nodes at level four. Note that
the maximum depth of the tree is not fixed, but depends on
the sampling density of the points.

In principle, each leaf node in the PRk-tree stores
coordinate, color, and normal information of a single point.
Internal nodes of the PRk-tree store averaged data from their
child nodes, as well as their number of children and pointers
to the corresponding child objects.

A 3D PRk-tree represents a regular partition of a volume.
If the total volume is a cube with side lengths0, the side

(a) (b)

Figure 3: An example of a 2D two-level PR9-tree (s=3).
Each node is decomposed into nine child nodes. (a) Distri-
bution of points in the plane at level zero. (b) Decomposition
of the PR9-tree at level two.

Table 1: Empirical depths of a PRk-tree for∼100 000 points. The
PR27-tree (s=3) provides a good balance between number of leaf
nodes and average depth

Tree Depth s = 2 s = 3 s = 4

Minimum 6 4 4
Maximum 12 9 7
Average 7 6 4

lengthsd of a partition at depthd of the PRk-tree equals

sd = s0

(
3√k)d

, (2)

Given the dimensions and configuration of the acquisition
and reconstruction environment, we can compute a limit
depthdlim, for which the dimensions of the partitions fall
below the initial camera precision. Thus, we can prune all
tree nodes which are located at depthd � dlim . Because
of the averaged representation contained in the inner nodes,
which might become leaf nodes after pruning, our strategy
is similar to a bucketing strategy.

From the distance between object and camera, and
from the camera resolution, we conclude that an area of
approximately 3× 3 mm2 projects into one camera pixel.
For our acquisition environment (see Section 6) with size
s0 = 2 m and typical configuration withk = 27, we have
dlim = 7.

4.3. Encoding and Compression

As elucidated in the previous section, the processing of each
frame of the initial 2D image data leads to a point cloud
organized in a PRk-tree. These trees, which represent the
reconstructed 3D video frames, need to be stored using a
space efficient and progressive representation. In order to

c© IEEE 2002

186 S. Ẅurmlin et al. / 3D Video Recorder

achieve a progressive encoding, we traverse the tree in a
breadth-first manner. Hence, we first encode the upper-level
nodes, which represent an averaged representation of the
corresponding subtree. As suggested in [5], a succinct stor-
age of the 3D representation can be achieved by considering
separately the different data types it contains. We distinguish
between the connectivity of the PRk-tree, which needs to be
encoded without loss, and the position of the points, color
and normal information, where the number of allocated bits
can be traded against visual quality and lossy encoding is
acceptable.

Note that in our coder design, we also need to trade-off
storage requirements, and hence coding complexity, against
complexity at the decoding step, which needs to be feasible
in real-time. We focus on coding strategies which provide
reasonable data reduction at low decoding complexity.

The following paragraphs describe the encoding of each
separate data stream

4.3.1. Connectivity

In the field of tree representation, a lot of research is
limited to binary trees [2]. Benoitet al. classify trees of
higher degrees into two categories: ordinal trees, where the
children of each node are simply ordered, and cardinal trees,
where each node hask positions, each of which may have
a reference to a child. According to this terminology, a
PRk-tree belongs to the family of cardinal trees. Jacobson
developed a simple, but asymptotically optimal scheme
for coding the connectivity of ordinal trees [10]. Benoit
et al. extended this representation to both ordinal and
cardinal trees and additionally support basic navigation in
constant time. The information theoretic lower bound for the
connectivity encoding of a PRk-tree containingn nodes and
up to k children per node,n being large with respect tok,
can be stated as

(1gk + 1ge)n bits, (3)

where 1g denotes the logarithm in base 2.

The algorithm presented in2 requires

(�1gk� + �1ge�)n + O(n) bits. (4)

In our current application, we do not exploit the additional
features of elaborated tree coding strategies, as those pre-
sented in [2]. Hence, we use 2 bits per node for encoding
the raw connectivity of the PRk-tree. Given a nodeni , we
write a 1 for every child node ofni and a 0 to terminate the
sequence. Thus, we follow Jacobson’s algorithm from [10].

4.3.2. Position Approximation

In order to achieve a complete cardinal tree encoding, we
need to encode additionally the indices of the child nodes.

This can be achieved by using�1gk� bits per child node.
A better compression ratio can be achieved by using an
adaptive encoding of the indexci of nodeni . In that case,
the number of bits spent onci is

�1gk� for i = 0 and�1g(k − ci −1 − 1)� for 1 � i < k (5)

Note that both variants of these representations of cardinal
trees are bounded by

(�1gk� + 1g2)n bits. (6)

Using this information only,̄pi , the centre of the volume
described by nodeni , can be used as an approximation of
the correct positionpi of the point primitive represented by
nodeni .

4.3.3. Position Refinement

However, the position approximation we deduce by just
considering the connectivity of the cardinal tree is not
precise enough. The position can further be refined by
encoding the error∇ pi = pi − p̄i using a Laplace quantizer.
We achieved good results using an 8-level quantizer. The
trade-offs of this part of the encoding scheme are discussed
in Section 7 and shown in Figure 9.

4.3.4. Leaf Flag

We introduce one additional bit per node which indicates
if the current node is a leaf node. This information is
redundant, but it helps to simplify the progressive decoding
process. We refer to Section 5.1 for further explanations.

4.3.5. Comparison with Mesh Coding

Most effort in the field of geometry compression has
been concentrated on the compression of triangular meshes
[5,7,9,24]. State-of-the art multi-resolution geometry coders
for triangular meshes achieve a compression performance
between 3 and 5 bits per triangle for connectivity and 10–
20 bits per vertex for its coordinates, depending on the
model and the initial quantization [1,3,19]. Our tree-based
geometry coding scheme uses a total of 17 bits per node,
which is of the same order-of-magnitude, and which can be
further improved by entropy coding. Yet, a tree is a more
redundant data structure than a mesh. Hence, for a given
3D object, the number of nodes in its tree representation is
larger than the number of vertices in its mesh representation.
In practice, the number of nodes is approximately equal to
1.1–1.4 times the number of vertices.

In both cases, additional bits need to be spent on normal
and color information. An extensive analysis of 3D object
compression with respect to geometry, color and normal
information was done by Deering [5].

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 187

Table 2: Memory requirements for one PR27 node

Name Data Type Raw Compressed
[bits] [bits]

Position Float[3] 3· 32 3+ 3 + 3
Color Char[3] 3· 8 6+ 3 + 3
Normal Float[3] 3· 32 8
Number Of Children Unsigned char 8

2 + 1 + �1g27�
Children *PRkNode 27· 32

Total 1088 37

4.3.6. Color

The hierarchical data representation cannot easily be
exploited for color coding. In case of high frequency
textures, the color values of two neighboring points can
be completely different. Hence we decided to use a
straight-forward quantization scheme for the color coding,
and do, at this point, not yet exploit eventual redundancies
in the PRk-tree representation. The colors are encoded in
YUV format and we achieved visually appealing results
using 6 bits for Y and 3 bits for U and V respectively.
During decoding however, we need to transform the color
into RGB space for rendering purposes. Storing the color
information already in RGB format would simplify the
decoding process, but the compression ratio, respectively
the reconstruction quality would decrease. By using twice
as much bits for the Y component than for the U and V
components respectively, we follow the recommendation
of the well established 4:2:2 format in traditional 2D video
coding.

4.3.7. Normals

The normal vectors are encoded using quantized spherical
coordinates. We normalize the vectors before encoding
and then allocate 4 bits for each of the two angles. In
general, the use of 2 bytes for normal quantization is
recommended [5,25], however, the quality of our current
normal computation is not exploiting a larger bit budget than
1 byte per node.

Table 2 summarizes the storage requirements for the
different data types per node and compares them to the initial
data size. For the lossless encoding of the connectivity of the
PRk-tree, we use a scheme coming close to the information
theoretic bound. The indicated values for the remaining data
types are those which provided us with visually appealing
results.

4.3.8. Inter-Frame Coherence

Consecutive frames in a 3D video sequence contain a lot of
redundant information, i.e. regions of the object remaining

almost static, or, changes which can be efficiently encoded
using temporal prediction and motion compensation
algorithms. These techniques are commonly used in 2D
video compression. However, the efficient computation
of 3D scene flows is non-trivial. Previous efforts into this
direction predict for our current prototype configuration
30 of computation time for the scene flow per frame [30].
Nevertheless, exploiting inter-frame coherence based on
the analysis of 3D displacements of all points, together
with color and normal encoding exploiting the hierarchical
data structure, can certainly improve the compression
performance of our coding scheme.

4.3.9. Entropy Coding

After the encoding of a given frame, we get six separate bit
streams, describing connectivity, position approximation,
position refinement, leaf flags, colors and normals.
Each of these bit streams is further compressed by
an entropy coder. In our current implementation, we
use the range coder provided by Schindler (http:

//www.compressconsult.com/rangecoder). Range
coding is similar to arithmetic coding [23], but is about twice
as fast for a negligible decrease in compression performance
[13]. The main difference lies in the renormalization step,
which is bitwise in classical arithmetic coding and bytewise
in range coding.

Figure 4 summarizes all encoding steps which are applied
to each 3D video frame, described by a PRk tree data
structure.

4.3.10. File Format

Currently, we save the different bit streams into separate
files. For each frame and bit stream, we store the
compressed bit stream, preceded by a frame identifier and
the compressed bit stream length in bytes. This format
allows for navigation in the sequence and does not impose
any restrictions on the order in which the frames are
decoded.

5. 3D Video Playing

The 3D video player is the final stage of the 3D Video
Recorder framework. It decodes 3D video sequences
from disk and renders individual points by employing a
point-based splatting technique. Progressive rendering is
implemented not only by splatting individual points at leaf
nodes, but also by usingaveraged pointsfrom intermediate
tree nodes. Frames and quality levels are controlled by user
interaction and desired frame rate.

5.1. Decoding

During playback, the 3D video player requests a frame
ftarget at quality levelq, whereq is the maximum depth

c© IEEE 2002

188 S. Ẅurmlin et al. / 3D Video Recorder

9 bits

8 bits

12 bits

Position

Normal

Color

Entropy coding

0 1 2 ...

3+[lg(k)] bits

Figure 4: Overview of the PRk tree encoding.

of the returned tree data structure. The main parts of the
decoding process are described in the remainder of this
section.

5.1.1. File Positioning

In a first step, the decoder needs to position the input file
at the correct frame. This is achieved by reading the frame
header information and thus retrieving the current frame
number fi and the length of the bit streaml i . If fi is
different from ftarget, the decoder advancesl i bytes and
reads the header information of the next frame as long as the
requested frame has not been reached. During the first pass,
the decoder builds a look-up table containing(fi , l i) tuples.
This table allows for backward navigation and simplifies
forward navigation in subsequent passes.

5.1.2. Progressive Symbol Load

Once the input file is at the right position, the first part of the
bit stream is read and entropy decoded into a bufferB. The
number of bytes which are initially read depend on quality
levelq and on bit stream lengthl i .

During the actual decoding process, decoder symbols are
retrieved fromB. If B does not contain enough symbols to
reach the requested quality levelq, the next set of symbols
can be progressively read from the file intoB.

Since the PRk-tree is traversed in breadth-first order
during encoding, we retrieve the information for the top
nodes by decoding the first part of the bit stream.

5.1.3. Point Primitive Decoding

The decoder does not need to return a complete tree data
structure, but only the decoded point primitives. Hence, the
parent–child relations from the initial data structure are only
temporarily stored. In fact, the currently decoded nodeni
needs to know its parent node for setting the bounds of
the volume it represents. This volume is determined by the

parent’s volume and by the structure of the cardinal tree, i.e.
by ni ’s indexci . This information is necessary for correctly
decoding the position of the point primitive contained inni .

For playback at quality levelq, we need to decode the set
of significant nodes for quality levelq. A nodeni,d, located
at depthd in the tree, is significant for quality levelq if
d = q or if ni,d is a leaf node withd < q.

Since our connectivity encoding only allows us to deter-
mine if ni,d is a leaf node during decoding of leveld+1, we
use the additional leaf flag for taking this decision already at
leveld.

Based on the results of decoding the connectivity and
of the leaf flag bit streams, we determine whetherni,d
is significant with respect toq. If this is the case, we
further proceed with the complete decoding ofni,d and write
its position, normal, and color information into the vertex
array. The Cartesian coordinates of the normal vectors are
retrieved from a precomputed look-up table and the YUV
color components additionally need to be transformed into
RGB space.

5.2. Point-Based Rendering

We employ two different splatting schemes for point-based
rendering. With the first scheme we can achieve pure
rendering frame rates up to 20 frames per second. The
second scheme, which provides higher quality rendering,
still ensures interactive frame rates up to 5 frames per
second. We use the computed surface normals for optional
per-point reshading.

Similar to QSplat [25], the first splatting scheme uses
OpenGLGL POINTs as splatting primitive. After decoding
the 3D video we directly transfer the corresponding points
from disk into anOpenGL vertex array.The vertex arrays
are then rendered using the OpenGL pipeline. The shape
of the splatting primitive is very important for the resulting
visual quality of the rendered object. By usingGL POINTs,
we are restricted to either square (non anti-aliased points) or
circular primitives (anti-aliased points). Unfortunately, these
splats are nothing more than “fat pixels” on the screen. Thus,
the splats cannot adjust to the shape of the object’s silhouette
in an optimal way. This is a limitation of the OpenGL point
primitive. By using other graphics APIs such as Microsoft’s
DirectX, one can overcome this restriction. DirectX provides
a point spriteprimitive whose projected shape depends on
the direction of the normal, which can point in arbitrary
directions. Jaggy edges arising with fixed splat shapes could
so be avoided. Note that the use ofGL POINTs enables us
to easily merge 3D video with conventional geometry-based
objects and environments by depth compositing.

The second scheme utilizes the EWA surface splatting
approach from Zwickeret al. [34], which is based on a

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 189

screen space formulation of the elliptical weighted average
(EWA) filter adapted for irregular point samples. EWA
surface splatting provides us with high-quality images
and renders approximately 250 000 anti-aliased points per
second. Recently, Renet al. [22] introduced object space
EWA surface splatting which implements the EWA filter as
a two-pass rendering algorithm using programmable vertex
and pixel shader architectures. This hardware-accelerated
approach achieved a rendering performance of up to 3
million points per second and is well suited for future
integration into our 3D video framework.

5.3. Interaction

As described in Section 5.1, we can randomly access and
decode individual frames of the 3D video. Furthermore,
every frame can be retrieved at different quality levels,
reaching from a coarse approximation to a very detailed
representation. During normal playback, we read frame after
frame and control the quality level such that the player
adheres to the frame-rate of the original 2D video sequence.
The quality level is thus determined by the decoder’s
performance and rendering complexity. When the sequence
is paused, the decoder can completely decode the current
frame at the highest quality level.

Fast-forward is implemented by decoding only a coarse
representation, by using larger frame increments, or
by a combination of both. Fast-reverse is realized in a
corresponding way, we just need to decrement the requested
frame number instead of incrementing it in between frames.

Slow motion can simply be realized by slowed-down
playback, i.e. by decoding higher quality levels than the
player supports in real-time. High-quality slow motion,
however, requires additional point-based shape interpolation
between consecutive frames, or, the use of high-speed
cameras.

The 3D video player implements a virtual trackball
and hence arbitrary navigation and scaling is possible
and follows the popular interaction metaphors from other
graphics renderers.

Special effects, such as freeze-and-rotate, can easily be
achieved by playing a sequence, pausing, rotating the view-
point, and continuing playback again. In case the system
is used for editing a 2D video from a 3D video sequence,
the virtual camera path and the frame increments can be
configured in a script file.

6. Prototype System

We built a prototype acquisition and reconstruction
environment with six digital cameras—two Point Grey
Research Dragonfly and four SONY DFW-V500 cameras—
allowing to generate 3D video from approximately

Figure 5: Physical setup of the prototype system.

160 degrees. Both camera types are equipped with
640 × 480 CCD imaging sensors. We use C- and CS-
mount lenses with focal lengths between 2.8 and 6mm.
For calibrating the six cameras, we employed the Caltec
camera calibration toolbox (http://www.vision.
caltech.edu/bouguetj/calib{_}doc/), which
is based on [8,33]. Each of the six cameras is connected
via FireWire to a 1.2 GHz Athlon Linux-based PC
System, where the 2D video is recorded. The camera
acquisition software is based on the linux1394 project
(http://sf.net/projects/linux1394/) and the
libdc1394 digital camera control library for Linux
(http://sf.net/projects/libdc1394/). Although
both camera types are capable of capturing unsynchronized
images at 30 frames per second, external synchronization
decreases the capture rate to 10 frames per second. The
DFW-V500 cameras deliver YUV 4:2:2 images which
are directly converted to RGB. The Dragonflys deliver
8-bit Bayer tiled images and thus RGB color interpolation
is needed. For this purpose, we either use bilinear
interpolation or an edge sensing algorithm. Note that we
carry out chroma-keying in the RGB color space. The
stored image sequences are processed on a dual processor
machine with two AMD AthlonMP 1600+ CPUs where
the 3D video is generated. The 3D video renderer runs
on a 1.8 Ghz Pentium4 machine equipped with an nVidia
GeForce3 Ti200 graphics accelerator. The physical setup of
the acquisition environment is depicted in Figure 5.

7. Experimental Results

Figure 8(a) and (b) show some example images from
3D video sequences recorded in our prototype system.
Note that we currently build 3D videos using a contour
approximation threshold of 1 and all cameras. Unfortunately,
due to the physical dimensions of the prototype system,

c© IEEE 2002

190 S. Ẅurmlin et al. / 3D Video Recorder

(a) (b)

Figure 6: Different Splatting Schemes. (a) shows an image
rendered using the simple splatting scheme. (b) shows an
image rendered with surface splatting.

(a) (b)

Figure 7: Quality-Performance trade-off. Both images are
rendered using the simple splatting scheme. (a) shows an
image reconstructed with a contour extraction threshold of
1. (b) shows the same image reconstructed with threshold
15.

the reconstruction frustum is rather small and does not
allow for large movements. As discussed in Section 4.2,
we encode PR27-trees down to depth 6 and position errors
down to depth 5. Each frame leads to approximately 56 k
tree nodes and 48 k significant point primitives for quality
level 6. Supplementary videos can be downloaded from
our webpage:http://graphics.ethz.ch/~wuermlin/
publications.html.

7.1. Visual Quality

The small number of contours can lead to artifacts in
regions occluded by all reference images, especially visible
between the legs and under the arms. Furthermore the
normals (see flat-shaded images in Figure 8c) from the
3D reconstruction method are not very precise. We use
a normal fairing algorithm [20] to optimize the surface
normals. It turned out that this approach did not provide

us with better normals since the quality of the underlying
surface representation is also not too good (see depth map
in Figure 8d). Figure 6 shows comparative frames rendered
with the simple splatting scheme based on OpenGL point
primitives (a) and using EWA surface splatting (b). Note
the anti-aliasing provided by surface splatting, which is
especially visible on the logo of the shirt. Figure 9 shows
identical frames, except that frame (a) is rendered with
refinement of the point primitives’ position and frame (b)
only uses the position approximation resulting from the
PRk-tree structure. In frame (b), the position errors are well
noticeable at the contours of the 3D video object, and are
especially disturbing during playback. Our results show that
an accurate encoding of the point primitives’ position, at
least down to a certain tree depth, is essential for visually
appealing images.

7.2. Timings

The timings of our multi-threaded implementation of the 3D
video processing on a dual processor machine are as follows:

• Contour extraction:∼30 ms per 3D video frame

• 3D reconstruction:∼0.7 s per 3D video frame

• Encoding:∼1 sper 3D video frame.

The accuracy of the contours influences the processing
time of the 3D reconstruction (see Figure 7).

7.3. Compression

The bit rates for the different data streams of typical
sequences are listed in Table 3. Note that in our prototype
implementation, we encode the 12 color bits per node
on 2 bytes, and we use 6 bits per node for the position
approximation, instead of the required�1g27� = 5 bits for
PR27-trees. Furthermore, we point the reader’s attention to
the fact that the final entropy coding step, reduces the total
data volume by almost 60%. The framework allows us to
encode 3D video sequences of humans at a total bit rate
of less than 7 Mbps, the sequence running with 8.5 frames
per second in normal playback. This represents an average
of 14 bits per node of the PR27-tree and leads to a total
size of typically less than 30 MB for a sequence of 30 s.
Compared to the memory requirements of the complete data
structure (see Table 2), we achieve a compression ratio of
64:1. Recording the same sequence with six cameras at 8.5
frames per second would lead to approximately 2 Mbps in
consumer video quality (MPEG-1) or 5 megabit per second
in broadcast quality TV (MPEG-2). However, six separate
MPEG sequences would only include temporal correlation
in between frames from different cameras, but no spatial
correlation, as in our 3D video format.

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 191

(a) (b) (c) (d)

Figure 8: Images from 3D video sequences. (a) and (b) show surface splatted views from the 3D video. (c) demonstrate the
reconstructed normals by flat-shading the view from (b) without colors. (d) is the corresponding depth map.

Table 3: Bit rates in megabit per second for 3D video streams
recorded at 8.5 frames per second

Type of information Before Entropy After Entropy
Coding [Mbps] Coding [Mbps]

Connectivity 0.95 0.37
Position approximation 2.96 1.43
Position refinement 0.61 0.61
Leaf flag 0.48 0.06
Color 7.62 2.92
Normals 3.81 1.30
Total 16.4 6.7

8. Conclusions and Future Work

The 3D Video Recorder is a powerful framework for
generating three-dimensional video. Our 3D video concept
is founded on point primitives which are stored in a
hierarchical data structure. The 3D video player decodes

(a) (b)

Figure 9: Necessity of accurate position encoding. (a) with,
and (b) without position refinement.

and displays the representation from disk in real-time and
provides interaction features like fast-forward and fast-
reverse, as well as arbitrary scaling and rotating. Limitations

c© IEEE 2002

192 S. Ẅurmlin et al. / 3D Video Recorder

include the quality of the underlying surface representation
and the precision of the reconstructed normals. We plan to
optimize the quality by employing other 3D reconstruction
methods and by using more than six cameras. Furthermore,
photometric calibration of the cameras is needed for our
point-merging framework which would improve the texture
quality. We expect better compression performance by
exploiting inter-frame coherence and by devising adaptive
bit allocation schemes for the lossy parts of the 3D video
encoding. Future work will also include the integration of
the hardware-accelerated EWA surface splatting and view-
dependent decoding into the 3D video player.

Acknowledgements

Wewould like to thank Stefan Ḧosli, Nicky Kern, Christoph
Niederberger and Lior Wehrili for implementing parts of the
system; Martin N̈af for producing the video, Mark Pauly
and Matthias Zwicker for the point rendering engine and
for proofreading the paper. Many thanks to all members of
the blue-c team for many helpful discussions. This work
has been funded by ETH Zurich grant no. 0-23803-00 as an
internal poly-project.

References

1. C. L. Bajaj, V. Pascucci and G. Zhuang. Progressive
compression and transmission of arbitrary triangular
meshes. InProceedings Visualization 99, IEEE Com-
puter Society Press, pp. 307–316. 1999.

2. D. Benoit, E. D. Demaine, J. I. Munro and V. Raman.
Representing trees of higher degree. InProceedings of
the 6th International Workshop on Algorithms and Data
Structures 99, Lecture Notes in Computer Science 1663,
Springer-Verlag, pp. 169–180. 1999.

3. D. Cohen-Or, D. Levin and O. Remez. Progressive
Compression of Arbitrary Triangular Meshes. InPro-
ceedings Visualization 99, IEEE Computer Society
Press, pp. 67–72. 1999.

4. B. Curless and S. Seitz. 3D photography. Course Notes.
ACM SIGGRAPH 2000, 2000.

5. M. F. Deering. In R. Cook (ed),SIGGRAPH 95
Conference Proceedings, Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, pp. 13–20. 1995.

6. O. Faugeras.Three-dimensional Computer Vision: A
Geometric Viewpoint. MIT Press, 1993.

7. S. Gumhold and W. Straßer. Real time compression
of triangle mesh connectivity. In M. Cohen (ed),
SIGGRAPH 98 Conference Proceedings, Annual Con-
ference Series, ACM SIGGRAPH, Addison Wesley,
pp. 133–140. July 1998.

8. J. Heikkila and O. Silven. A four-step camera calibra-
tion procedure with implicit image correction. InPro-
ceedings of the International Conference on Computer
Vision and Pattern Recognition 97. IEEE Computer
Society Press, 1997.

9. H. Hoppe. Progressive meshes. In H. Rushmeier (ed),
SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, ACM SIGGRAPH, Addison
Wesley, pp. 99–108. 1996.

10. G. Jacobson. Space-efficient Static Trees and Graphs. In
30th Annual Symposium on Foundations of Computer
Science, IEEE, pp. 549–554. 1989.

11. T. Kanade, P. Rander and P. Narayanan. Virtualized
reality: Constructing virtual worlds from real scenes.
IEEE MultiMedia, 4(1):43–54, 1997.

12. A. Laurentini. The visual hull concept for silhouette-
based image understanding.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(2):150–
162, 1994.

13. G. Martin. Range encoding: an algorithm for removing
redundancy from a digitised message. InVideo & Data
Recoding Conference, Southampton. 1979.

14. W. Matusik, C. Buehler and L. McMillan. Polyhedral
visual hulls for real-time rendering. InProceedings of
Twelfth Eurographics Workshop on Rendering, pp. 115–
125. 2001.

15. W. Matusik, C. Buehler, R. Raskar, S. J. Gortler
and L. McMillan. Image-based visual hulls. In K.
Akeley (ed),Proceedings of SIGGRAPH 2000, ACM
Press / ACM SIGGRAPH / New York, pp. 369–374.
2000.

16. S. Moezzi, A. Katkere, D. Y. Kuramura and R. Jain.
Immersive video. InProceedings of the 1996 Virtual Re-
ality Annual International Symposium, IEEE Computer
Society Press, pp. 17–24. 1996.

17. J. Mulligan and K. Daniilidis. View-independent scene
acquisition for tele-presence. InProceedings of the In-
ternational Symposium on Augmented Reality, pp. 105–
108. 2000.

18. P.J. Narayanan, P. Rander and T. Kanade. Constructing
virtual worlds using dense stereo. InProceedings of the
International Conference on Computer Vision ICCV 98,
pp. 3–10. 1998.

19. R. Pajarola and J. Rossignac. Squeeze: Fast and Pro-
gressive Decompression of Triangle Meshes. InPro-
ceedings of Computer Graphics International, IEEE
Computer Society Press, pp. 173–182. 2000.

c© IEEE 2002

S. Ẅurmlin et al. / 3D Video Recorder 193

20. M. Pauly and M. Gross. Spectral processing of point-
sampled geometry. InProceedings of SIGGRAPH 2001,
ACM Press / ACM SIGGRAPH, pp. 379–386. 2001.

21. S. Pollard and S. Hayes. View synthesis by edge transfer
with application to the generation of immersive video
objects. In Proceedings of the ACM Symposium on
Virtual Reality Software and Technology, ACM Press /
ACM SIGGRAPH, New York, pp. 91– 98. 1998.

22. L. Ren, H. Pfister and M. Zwicker. Object space EWA
surface splatting: A hardware accelerated approach
to high quality point rendering. InProceedings of
Eurographics 2002, COMPUTER GRAPHICS Forum,
Conference Issue, pp. 461–470. 2002.

23. J. Rissanen and G. G. Landon Jr. Arithmetic coding.
IBM Journal of Research and Development, 23(2):149–
162, 1979.

24. J. Rossignac. Edgebreaker: Connectivity compression
for triangle meshes.IEEE Transactions on Visualization
and Computer Graphics, 5(1):47–61, 1999.

25. S. Rusinkiewicz and M. Levoy. QSplat: A multires-
olution point rendering system for large meshes. In
Proceedings of SIGGRAPH 2000, ACM Press/ACM
SIGGRAPH, New York, pp. 343–352. 2000.

26. S. Rusinkiewicz and M. Levoy. Streaming QSplat: A
Viewer for Networked Visualization of Large, Dense
Models. In Proceedings of the 2001 Symposium on
Interactive 3D Graphics, ACM, pp. 63–68. 2001.

27. H. Samet.The Design and Analysis of Spatial Data
Structures, Addison-Wesley, Reading, MA, 1990.

28. J. W. Shade, S. J. Gortler, L. He and R. Szeliski.
Layered depth images. In M. Cohen (ed),SIGGRAPH
98 Conference Proceedings, Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, pp. 231–242. July
1998.

29. A. R. Smith and J. F. Blinn. Blue screen matting.
In Proceedings of SIGGRAPH 96, ACM SIGGRAPH,
Addison Wesley, pp. 259–268. 1996.

30. S. Vedula.Image Based Spatio-Temporal Modeling and
View Interpolation of Dynamic Events. PhD thesis.
Carnegie Mellon University, Pittsburgh, PA, 2001.

31. P.Vlahos.Comprehensive Electronic Compositing Sys-
tem, U.S. Patent 4,100,569, July 11 1978.

32. Y. Yemez and F. Schmitt. Progressive Multilevel
Meshes from Octree Particles. InProceedings of the
2nd International Conference on 3-D Imaging and
Modeling, IEEE Computer Society Press, pp. 290–299.
1999.

33. Z. Zhang. Flexible camera calibration by viewing a
plane from unknown orientations. InProceedings of the
7th International Conference on Computer Vision 99,
IEEE Computer Society Press, pp. 666–673. 1999.

34. M. Zwicker, H. Pfister, J. van Baar and M. Gross.
Surface splatting. InProceedings of SIGGRAPH 2001,
ACM Press/ACM SIGGRAPH, New York, pp. 371–
378. 2001.

c© IEEE 2002

